

azion-python: interacting with Azion’s ReST API

[image: _images/azion-python.svg]
 [https://travis-ci.org/mauricioabreu/azion-python][image: GitHub license]
 [https://github.com/mauricioabreu/azion-python/blob/master/LICENSE]azion-python is a library to interact with Azion’s ReST API.

Note

This client only supports Python 3. I recommend you to upgrade your systems to use Python 3.

With this library you will be able to use the ReST API using a pythonic approach,
handling Python objects (models) instead of raw JSON responses.

from azion import authorize, login

Retrieve a new token
auth = authorize('myemail@mail.com', 'mysecretpassword')

Login using the token
azion = login(auth.token)

Retrieve a configuration
configuration = azion.get_configuration(1028910)

print(configuration.name)

You can checkout more examples throught the documentation.

	Configurations examples

	Purge examples
	Purge by URL

	Purge by Cache Key

	Purge Wildcard

Installation

$ pipenv install azion-python

API

	API Reference
	Azion client

	Client errors

	Configurations

Contributing

	Testing the client
	Integration tests

	Unit tests

Indices and tables

	Index

	Module Index

	Search Page

Configurations examples

Here are some examples so you don’t have to read the source to understand
how to use this client.

from azion import authorize, login

Authorize and login
auth = authorize('myemail@mail.com', 'mysecretpassword')
azion = login(auth.token)

Create a configuration
azion.create_configuration(
 'My cool configuration',
 'www.myorigin.com',
 'www.myhostheader.com'
)

Purge examples

If you need to remove content from Azion cache before it expires, use
the Purge API. You can use it to expire content based on your own business rules.

Purge by URL

from azion import authorize, login

Authorize and login
auth = authorize('myemail@mail.com', 'mysecretpassword')
azion = login(auth.token)

Purge by URL using CNAME and Domain name
These two URLs will be purged from Azion cache
my_urls = [
 'www.maugzoide.com/foobar.jpg'
 '11111a.ha.azioncdn.net/test.js'
]

azion.purge_url(urls)

This endpoint answers with HTTP 207 (WebDAV). It is a multi-status code designed to represent
an answer that was partially OK.
In the result you can find that the dictionary keys are the status and the keys urls and details
will exist for every status code. To filter for responses that succeed/failed, we provide two methods:

result = azion.purge_url(urls)

URLs that were purged
result.succeed()

URLs that were not purged
result.failed()

Purge by Cache Key

You can purge using a cache key. A common example is purging an image.
Purging a URL like static.yourdomain.com/images/image.jpg@@ will include all variations
found after image.jpg

my_urls = [
 'www.maugzoide.com/profile.jpg@@'
 '11111a.ha.azioncdn.net/@@cookie_name=foobar'
]

azion.purge_cache_key(urls)

Purge Wildcard

Use a wildcard purge to delete a list of objects from the cache.
This function accepts one URL only.

url = 'www.maugzoide.com/static/img/*'

azion.purge_wildcard(url)

API Reference

	Azion client
	Azion

	Client errors

	Configurations

Azion client

Azion is the main entrypoint to work with Azion’s ReST API.

Azion

	
class azion.client.Azion(token=None, session=None)

	Entrypoint to work with Azion API.

To start using this client, we need a valid token.
For this we can use the authorize function:

from azion.api import authorize, login
auth = authorize(user, password)
azion = login(auth.token)

Now you can use all API resources.

	
authorize(username, password)

	Obtain a fresh token to handle Azion’s API protected calls.

	Parameters

	
	username (str) – username

	password (str) – password

	
create_configuration(name, origin_address, origin_host_header, cname=None, cname_access_only=False, delivery_protocol='http', digital_certificate=None, origin_protocol_policy='preserve', browser_cache_settings=False, browser_cache_settings_maximum_ttl=0, cdn_cache_settings='honor', cdn_cache_settings_maximum_ttl=0)

	Create a configuration.

	Parameters

	
	name (str) – human-readable name for the configuration.

	origin_address (str) – origin address that can be an IP
or a hostname (FQDN)

	origin_host_header (str) – host header will be sent to the origin.

	cname (list) – a list os strings containing all cnames.
Default empty string.

	cname_access_only (bool) – defines whether the content delivery
should be done only through cnames. Default to False.

	delivery_protocol (str) – defines the HTTP protocol used
to deliver content. Default to http.

	digital_certificate (int) – Digital Certificate ID.
Check Digital Certificates [https://www.azion.com.br/developers/documentacao/produtos/content-delivery/digital-certificates/] for more info.

	origin_protocol_policy (str) – Protocol policy used to connect
to the origin.

	browser_cache_settings (bool) – whether the user browser should
respect the cache headers sent from the origin. Default to False.

	browser_cache_settings_maximum_ttl (int) – used within
browser_cache_settings, defines how many seconds
browser cache object will live. Default to 0.

	
create_origin(configuration_id, name, origin_type, method, host_header, origin_protocol_policy, addresses, connection_timeout, timeout_between_bytes)

	Create an origin.

	
delete_configuration(configuration_id)

	Delete a configuration.

	Parameters

	configuration_id (int) – Configuration ID.

	
get_configuration(configuration_id)

	Retrieve a configuration.

	Parameters

	configuration_id (int) – configuration id

	
list_configurations()

	List configurations.

	
list_origins(configuration_id)

	List origins of the given configuration.

	Parameters

	configuration_id (int) – Configuration ID

	
login(token)

	Log the user into Azion’s API.

	Parameters

	token (str) – Authorization token. It can be
obtained from token_auth()

	
partial_update_configuration(configuration_id, name=None, cname=None, cname_access_only=None, delivery_protocol=None, digital_certificate=None, rawlogs=None, active=None)

	Partially updates a configuration.

One or more fields can be updated, without changing the current
values of the other fields of this configuration.

	Parameters

	
	name (str) – human-readable name for the configuration.

	cname (list) – a list os strings containing all cnames.
Default empty string.

	cname_access_only (bool) – defines whether the content delivery
should be done only through cnames. Default to False.

	delivery_protocol (str) – defines the HTTP protocol used
to deliver content. Default to http.

	digital_certificate (int) – Digital Certificate ID.
Check Digital Certificates [https://www.azion.com.br/developers/documentacao/produtos/content-delivery/digital-certificates/] for more info.

	rawlogs (boolean) – Whether this configuration will store logs in the Cloud Storage.

	active (boolean) – Whether this configuration is active.

	
purge_cache_key(urls, method='delete')

	Purge content of the given URLs inside
the urls list. With this purge endpoint you
can pass cache keys.

	Parameters

	
	urls (list) – List of URLs to be purged.

	method (str) – How the content will be purged.
Default to ‘delete’.

	
purge_url(urls, method='delete')

	Purge content of the given URLs inside
the urls list.

	Parameters

	
	urls (list) – List of URLs to be purged.

	method (str) – How the content will be purged.
Default to ‘delete’.

	
purge_wildcard(url, method='delete')

	Purge content of the given URL.
With this purge endpoint you can use a wildcard (*)
to remove all objects matching the URL.

	Parameters

	
	url (str) – Wildcard URL to be purged.

	method (str) – How the content will be purged.
Default to ‘delete’.

	
replace_configuration(configuration_id, name=None, cname=None, cname_access_only=None, delivery_protocol=None, digital_certificate=None, rawlogs=None, active=None)

	Replace a configuration.

One or more fields can be updated. Fields that were not specificed
in the request will be replaced for default values. Consider using
partial_update_configuration()

	Parameters

	
	configuration_id (int) – Configuration ID

	name (str) – human-readable name for the configuration.

	cname (list) – a list os strings containing all cnames.
Default empty string.

	cname_access_only (bool) – defines whether the content delivery
should be done only through cnames. Default to False.

	delivery_protocol (str) – defines the HTTP protocol used
to deliver content. Default to http.

	digital_certificate (int) – Digital Certificate ID.
Check Digital Certificates [https://www.azion.com.br/developers/documentacao/produtos/content-delivery/digital-certificates/] for more info.

	rawlogs (boolean) – Whether this configuration will store logs in the Cloud Storage.

	active (boolean) – Whether this configuration is active.

Client errors

Documentation of client errors generated from Azion’s ReST API.

Exceptions used to describe errors when handling
Azion API requests/responses.

Documentation of possible errors to be returned from the API can
be found here: https://www.azion.com.br/developers/api-v1/#status-codes

	
exception azion.exceptions.AzionError(response)

	This class represents all errors related to response.

Whenever Azion’s API returns a error code, we catch them and
provide a better and uniform way to handle/inspect them.

	
response

	HTTP response that originated the error.

	
status_code

	HTTP status code raised by the error.

	
errors

	List of errors generated from the response.

	
exception azion.exceptions.AzionException

	Base class exception. All exceptions related to
requests/responses errors are inherited from it.

	
exception azion.exceptions.BadRequest(response)

	Indicate that the server could not understand the request due
to invalid syntax.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/400

	
exception azion.exceptions.Conflict(response)

	Indicate a request conflict with current state of the server.

	
exception azion.exceptions.Forbidden(response)

	Indicate that the server understood the request but refuses to
authorize it.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/403

	
exception azion.exceptions.MethodNotAllowed(response)

	Indicate that the request method is known by the server
but has been disabled and cannot be used.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/405

	
exception azion.exceptions.NotAcceptable(response)

	Indicate that a response matching the list of acceptable values
defined in Accept-Charset and Accept-Language cannot be served.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/406

	
exception azion.exceptions.NotFound(response)

	Indicate that the server can’t find the requested resource.
Links which lead to a 404 page are often called broken or dead links.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/404

	
exception azion.exceptions.TooManyRequests(response)

	Indicate he user has sent too many requests
in a given amount of time (“rate limiting”).

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429

	
exception azion.exceptions.Unauthorized(response)

	Indicate that the request has not been applied because it lacks
valid authentication credentials for the target resource.

More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/401

	
azion.exceptions.handle_error(response)

	Handle the request that failed to retrieve an appropriate
response.

	Parameters

	response (object) – requests Response object.

Configurations

Documentation of Configurations API.

	
class azion.models.Configuration(data)

	Model representing the configuration retrieved
from the API.

	
id

	Configuration’s unique ID.

	
name

	Configuration name - a human representation to identify
the configuration.

	
domain_name

	Domain name is an unique represenation of the configuration
in the entire CDN.

	
active

	Wheter the configuration is currently deployed or not.

	
delivery_protocol

	Delivery Protocol is the protocol used to deliver the content
through the CDN.

	
digital_certificate

	Digital’s Certificate ID used to deliver the content using a
SSL certificate.

	
rawlogs

	Whether RawLogs is enabled for this configuration.

	
cnames

	A list of domains used to represent your configuration, other than
the domain_name.

Testing the client

Every feature of a codebase must be tested if we want to be more confident about it.
Tests help to document what the code does and how it works. Need a new feature or need to change
the behavior of a current function? Tests are here to cover you.

Integration tests

The purpose of an Integration test is to ensure that our code units, depending on other units, work as expected.
In our case, we need to test how our code behave when interacting to the real API. How does it handle real JSON responses?

To acomplish this task, we use Betamax [https://github.com/betamaxpy/betamax] library. It records real requests made to the API,
saves it as JSON and replays it next time, without hitting the production site again.

Here is an example on how to test the creation of a new configuration:

class TestConfiguration(object):

 def test_create_configuration(self):
 client = Azion(token)
 recorder = betamax.Betamax(client.session)

 with recorder.use_cassette('Configuration_create'):
 configuration = client.create_configuration(
 'Dummy configuration', 'www.example.com', 'ww2.example.com',
 cname=['www.example-cname.com'], delivery_protocol='http')
 assert isinstance(configuration, Configuration)

To create new tests, you need to export an environment variable named AZ_TOKEN.
If you are using Bash shell you can export the variable and then run the tests:

AZ_TOKEN='mytoken'
make test

Using Fish shell like me? No problems:

set -x AZ_TOKEN 'mytoken'
make test

It is necessary because your new tests will try to hit the production API to fetch the response.
After executing the test, a new cassette will be generated. Your patch must contain these files.

Cassettes

Cassettes are the files used to store/load requests and responses. A good convention is to name them with the resource capitalized
and the action of the API function in lowercase, for example: Configuration_create

Unit tests

Fast feedback can be given by unit tests. These are tests used to cover units of code in isolation - they should not depend on other components.
And to achieve this goal, we must not rely on third party results like JSON responses obtained over a unreliable network.

Mocking the response is the right way to go here, ensuring that we called our function with the right parameters.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 azion	

 	
 	
 azion.exceptions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	active (azion.models.Configuration attribute)

 	authorize() (azion.client.Azion method)

 	Azion (class in azion.client)

 	
 	azion.exceptions (module)

 	AzionError

 	AzionException

B

 	
 	BadRequest

C

 	
 	cnames (azion.models.Configuration attribute)

 	Configuration (class in azion.models)

 	
 	Conflict

 	create_configuration() (azion.client.Azion method)

 	create_origin() (azion.client.Azion method)

D

 	
 	delete_configuration() (azion.client.Azion method)

 	delivery_protocol (azion.models.Configuration attribute)

 	
 	digital_certificate (azion.models.Configuration attribute)

 	domain_name (azion.models.Configuration attribute)

E

 	
 	errors (azion.exceptions.AzionError attribute)

F

 	
 	Forbidden

G

 	
 	get_configuration() (azion.client.Azion method)

H

 	
 	handle_error() (in module azion.exceptions)

I

 	
 	id (azion.models.Configuration attribute)

L

 	
 	list_configurations() (azion.client.Azion method)

 	
 	list_origins() (azion.client.Azion method)

 	login() (azion.client.Azion method)

M

 	
 	MethodNotAllowed

N

 	
 	name (azion.models.Configuration attribute)

 	
 	NotAcceptable

 	NotFound

P

 	
 	partial_update_configuration() (azion.client.Azion method)

 	purge_cache_key() (azion.client.Azion method)

 	
 	purge_url() (azion.client.Azion method)

 	purge_wildcard() (azion.client.Azion method)

R

 	
 	rawlogs (azion.models.Configuration attribute)

 	
 	replace_configuration() (azion.client.Azion method)

 	response (azion.exceptions.AzionError attribute)

S

 	
 	status_code (azion.exceptions.AzionError attribute)

T

 	
 	TooManyRequests

U

 	
 	Unauthorized

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 azion-python: interacting with Azion’s ReST API

 		
 Configurations examples

 		
 Purge examples

 		
 Purge by URL

 		
 Purge by Cache Key

 		
 Purge Wildcard

 		
 API Reference

 		
 Azion client

 		
 Azion

 		
 Client errors

 		
 Configurations

 		
 Testing the client

 		
 Integration tests

 		
 Cassettes

 		
 Unit tests

